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Abstract 

The present work is devoted to modeling the behavior of railway track under dynamic load of wheel pair in view of elastic, 
viscoelastic and elastic-plastic properties of the area of interaction between two solids and elastic anisotropic properties of the 
subgrade, which differ in three main areas: along the rails along the sleepers and vertically downwards. The wave equation railway 
tracks suggest that the deformation and the permanent way and the mound itself is the field of interaction of bodies takes place in 
view of the spread of a finite speed of the wave surfaces. The solution methods used methods of asymptotic expansions in the time 
and space coordinate, the method of matching the expansions obtained for short times in the contact zone and outside it. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the International conference on Transportation Geotechnics and 
Geoecology. 
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1. Introduction 

 to explore in detail the process of dynamic loading of the track structure with subsequent establishment of 
dependencies for buckling and stresses it is necessary to simulate the dependencies of the force of interaction on 
different types of deformation (including bearing deformation) [1-12]. The main approaches that allow the detailed 
modeling of the interaction process between two rigid bodies differ from one another in the force acting in the contact 
area [1-5] and the nature of motion of the track (rail) points outside of the interaction region [6-12]. 
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After the beginning of the interaction of the wheel set, which is represented by a solid body and the construction of 
the top ways [13-16], the contact area with the radius of r0 is formed in this construction and both the quasi-longitudinal 
and quasi-transverse waves [17-19], which fronts represent surfaces of strong discontinuity, start to propagate from its 
surface [20-22]. 

2. Governing equation for wave problem 

The embankment of the railway is modeled by an elastic orthotropic two-dimensional Uflyand-Mindlin element 
that exhibits a cylindrical anisotropy. In the polar coordinate system, the dynamic behavior of this element is described 
using equations which take into account the rotary inertia of the cross sections, deformation of the transverse shear 
and axial symmetry of the problem [4]: 
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tension-compresiion rigidity for r and  directions, respectively; Dk – the torsional regidity; Сk – the shear stiffness; Еr, Е  and 
r,   - the coefficients of elastisity and Poisson's ratios for r and  directions, respectively; Grz, G z – the shear modules for 

rz and z planes, respectively; w(r, ) – the normal displacement of the median plane, u(r, ) and v(r, ) – the tangential 
displacements of the medial surface with respect to r and   coordinates; (r, ) and (r, ) – the rotation angles of the normals 
in r and  directions r,  (fig.1), - density, q – load, R1 – radius of spherical impactor, h – thickness of the plate. 

To determine the unknown displacements in Eq. (1) the following series expansion can be used [2,4,5,6]: 
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where Z – the required function, Z,(k) = kZ/tk, , the upper indices «+» and «-» of the derivative Z,(k) indicate that the value 
is found in front of and behind the wave surface, respectively, G – the normal velocity of the wave, Н(t-s/G) – the 
Heaviside step function, s – length of a curve, measured along the ray, t – time. 

The proposed method is based on the applying the geometric and kinematic conditions of compatibility, suggested 

in reference [1] and developed for physical components in the paper [2] as follows: 
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where   / t -  -time-derivative at the surface of the wavefront. 

 
Fig. 1. Model of the contact between wheel and rail. 

3. Contact problem 

To determine the coefficients of the series (2) for the required functions it is necessary to differentiate the wave 
equations (1) k times with respect to time, calculate their difference at various sides of the wave surface  and apply  
the compatibility condition (3). The found discontinuities allow one to write the expressions for the required functions 
in a view of an interval of the ray series within the accuracy of the coefficients, which are determined from the 
boundary conditions [2,4,5,13]. In order to determine the integration constants it is required to consider the problem 
of a dynamic contact between the wheel set and the track structure [9,10,11,15]. For the modelling of the contact the 
buffer is used, which can be represented as an elastic, visco-elastic and elastic-plastic element. For these three elements 
the dependencies of the arising contact force in the point of interaction on the rail displacement and mechanic 
characteristics of applied materials are determined [2,3,4,5,6,18] 
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1 2
1 13 8с k k , 0.33 , 1 2d R , plk , plk  – the minimal plastic constant of the interacting 

bodies,  1, E1 – the Poisson's ratio and the module of rigidity of the wheel set, respectively, 1 1 1 ,E 1 – the 

relaxation time in the case of the visco-elastic model, t  - the integration variable, 1 – the viscosity coefficient, , w - 
displacements of the upper and lower ends of the rail, respectively. 

4. Splicing solutions contact and wave problems 

For the determination of the integration constants it is necessary to write a system of equations that describes the behavior 
of the wheel set, the buffer and the rail contact area after the biginning of the interaction [4,5,8,9]. 

Taking into account the condition of a horizontal position of the tangent line towards the middle surface of the rail at the 
boundary points of the contact area with the wheel set, the system of equations defining the process of interaction between 
the wheel, rail and tie may be obtained [9,10,18]. This system is solved using the following initial conditions: 
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By solving the system of equations, which determine the behavoir of the interacting bodies after the beginning of the 
contact, at equal times and based on Eq. (4) the expression for the interaction force between the wheel and the rail my be 
written as 
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Figure 2 shows the time dependencies of the dimensionless contact force for different interaction models: curve 1 – 
elastic contact (Eq. (4)), curve 2 – visco-elastic contact (Eq. (5)), curve 3 – elastoplastic contact (Eq. (6)). The dotted line 
depicts the results of the experimental tests, carried out using a geometry car. From Fig. 2 it can be seen that the elastic 
model (Eq. (4)) gives the best approximation to the experimentally obtained data in respect to the maximal force value, 
the contact time and type of a graphic dependence. 

 
Fig.2. The dependence of the force of interaction on time for different models of contact. 
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5. Conclusion 

The conducted investigations have shown that the elastic model describes in the best way the behavior of the force 
in the point of interaction and by correctly choosing the stiffness properties of the superstructure and the main body 
of the embankment allows for the precise determination of the railway behavior with the dynamic loading. Operating 
by a kinematic parameter and a power parameter it is possible to find such a velocity and a cargo regime of the 
wagonage passing, at which the railway track would be less destroyed. On the contrary, by knowing the parameters of 
the velocity and the pressure on the axis one can determine the suitable materials for the embankment and the 
underlayer, as well as the parameters of armoring of the grade level, at which the arising sag and stresses would not 
exceed the acceptable value. 
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